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III. Hypothesis Testing (Part B)
�  Goal:  how to decide:

?

      We need the ability to make a decision
      among several choices.

an event has occurred
a signal is present

�
�
�

Basic Probability concepts
a-priori/posteriori probability
Bayes Rule

MAP detection
Bayes detection
Error types
Maximum likelihood criterion
Maximum error probability criterion
MinMax criterion

Neyman-Pearson criterion
Multiple hypotheses
Composite hypotheses testing
Receiver Operator Characteristic (ROC) curves



01/25/03 EC4570.WinterFY03/MPF 2

�  Neyman-Pearson Criterion

may be difficult
to determine

•  a priori probabilities

•  cost of each type of error

Radar Applications  �  what is important to know?
probability of detection
probability of false alarm

•  Goal:  determine decision rule where

         we maximize the probability of detection
         for a given probability of false alarm.

� � � �1 1 1 0max subject toP D H P D H �� �

� � � �1 1 0 11P D H P D H� �

� � � �0 1 1 0min subject toP D H P D H �� �

� � � �0 1 1 0C P D H P D H� �� �� � �� �

  Recall:

  called Lagrange multiplier

•  Use Lagrange multipliers
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Example:
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  Design the optimum decision rule with a fixed
  PFA = 0.1 based on one sample
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Example:
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  Design the optimum decision rule with a fixed
  PFA = 0.1 (based on 100 samples), s=1.
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�  Multiple Hypotheses Testing

•  We may have more than two decisions possible.

•  Assume – cost function Cij is known

  – a priori probabilities are known

•  Cost for hypothesis Hj given sample y is:

Cj =

•  Average cost is:

C =
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• Example:

� �

� �

� �

2
0 0

2
1 1

2
2 2

: ~ ,

: ~ ,

: ~ ,

n

n

n

H y N m

H y N m

H y N m

�

�

�

  Assume three possible signals may be present.

  Assume (1)  Pi = 1/3, Cii = 0, Cij = 1    i � j

(2)  N samples are available

  Design the decision rule which minimizes the
  probability of error using 1 sample.
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m0 m1 m2
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�  Composite Hypothesis Testing

•  We may not know the signal precisely (phase,
    amplitude).

•  Uncertainty in parameters may be built in the
    detection scheme.

•  Approach:   –  Model unknown parameter(s) as a
      random variable.

  –  Compute decision rule as a function
      of unknown parameter.

  –  Average decision rule with respect
      to unknown parameter(s).

  Example: H0 :    no signal

H1 :    signal with phase �1

H2 :    signal with phase �2, etc.

Note:  – detection  �  estimation of
   parameters
–  estimation may not be
    needed
–  �  need to average
    “uncertainties” out
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• Example:
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  Assume a binary detection where

  Assume m is a RV with Normal pdf N(0���

m)�

fm (m) =

  Compute the decision rule.
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�  What if the random parameter has an
unknown pdf ?

Estimate it or take a worse case scenario, and follow
as in example before

�  What if the unknown parameter is
deterministic ?

• No pdf can be used
• What to do:

° Use a Neyman Pearson test:  see whether
the test decision rule depends on the
unknown parameter
           if it does not: we’re done !
   (test called Uniformly Most Powerful (UMP)
test)
           if it does: estimate unknown parameter
first

° estimated parameter used in a “generalized
LRT”
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• Example:

Assume we have
H0: y ~ N(0,1)
H1: y ~ N(m,1)

Assume m is a deterministic unknown positive value

Compute the decision rule based on one sample, assume
a given PFA

How does PD vary as a function of m ?
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Assume we have
H0: y ~ N(0,1)
H1: y ~ N(m,1)

Assume m is a deterministic unknown value (can be either
positive or negative)

Compute the decision rule based on one sample, assume a
given PFA

• Example:
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• Detection performance as a function of m
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• Alternative: test based on |m|
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• Example:

Assume we have
H0: yn ~ N(0,1)
H1: yn ~ N(m,1), n=1, …, N

Assume m is a deterministic unknown positive value

Compute the decision rule, based on N samples
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�  Receiver Operator Characteristic (ROC)
      Curves

•  ROC curves are used to evaluate the performance of
    the receiver.

•  ROC curves given in terms of PFA and Ps.

PFA

f1 (z) = f (z|H1)

T4 T3 T2 T1

PD
f0 (z) = f (z|H0)

z

•

• What does the ROC curve look like ?
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• Look at the earlier example and derive expression
for PD and PFA

•Use above results to derive general trend for ROC
curves

 Assume we have
H0: y ~ N(0��2�

H1: y ~ N(m,�2)
Assume m is a deterministic unknown positive
value
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0
1

1

0 PFA

PD

med SNR

low SNR

high SNR

SNR = ��
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Binary Hypothesis Testing Schemes  Summary

Known prior
probabilities

P0, P1

C00 = C11 = 0

C01 = C10 = 1

Costs Cij
known

P0 = P1

Maximum
likelihood

MAP
minimum probability of error

Bayes detection

Costs Cij
known Minmax

Neyman
Pearson

Y

Y

Y

Y

Y

N

N

N

N
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Minimum
probability
of error
(MAP)

• Hypothesis
   modeled as
   random events
   with known pdfs.
• Known prior
   probabilities P0,
   P1.

� �
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Minimize cost

Maximum
likelihood

• Hypothesis
   modeled as
   random events
   with known pdfs.
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><
Bayes
detection

• Hypothesis
   modeled as
   random events
   with known pdfs.
• Known prior
   probabilities P0,
   P1.
• Cost functions Cij

    known.

Minmax • Hypothesis
   modeled as
   random events
   with known pdfs.
• Cost functions Cij

    known.
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Minimize maximum
average cost
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Neyman-
Pearson

• Hypothesis
   modeled as
   random events
   with known pdfs.

� �
� �

1

0

f y
f y

H1

H0

>< �

with
PFA = � user specified

Maximize probability of
detection PD for a given PFA

Test
Name

Decision
Rule

Data Model
Assumptions

Optimality
Criterion


